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DEFORMATION QUANTIZATION
SUPERINTEGRABILITY AND NAMBU MECHANICS

• Non-commutative geometry describes D-branes in a “magnetic”
field background: different directions of space do not commute,
xy 6= yx. The technical structure of NC geometry parallels
that of quantization in phase space: y 7→ p, θ 7→ ~.
Quantum Mechanics’ legacy to M-theory!

An equivalent alternative to Hilbert-space or path-integral quan-
tization. Logically complete and self-standing (Weyl, Wigner,
Moyal): one need not choose sides—coordinate or momentum space.
It works in full phase space, accommodating the uncertainty
principle. (Reviewed in Zachos, Int J Mod Phys A17 (2002) 297-316
[hep-th/0110114])

The variables involved (“kernel functions” or “Weyl transforms
of operators”) are c-number functions, like those of the
classical phase-space theory, and have the same interpreta-
tion, although they involve ~-corrections (“deformations”).
It is only the detailed algebraic structure of their respective
brackets and composition rules which contrast with the variables of
the classical theory.

• Ordinary multiplication is supplanted by the cornerstone
noncommutative Star Product (Groenewold, 1946)

f (x, p) ? g(x, p) ≡ f (x, p) e
i~
2

(
←
∂ x

→
∂ p−

←
∂ p

→
∂ x) g(x, p) .
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In practice, often evaluated through convolution,

f (r) ? g(r) =

(

~

π

)2 ∫

d2u d2v f (r + u)g(r + v) e
2i
~

u×v .

A noncommutative, associative, pseudodifferential operation.
• Encodes the entire quantum mechanical action.
• Its antisymmetrization (commutator) is the Moyal Bracket
(MB {{, }}).

Instead of a wavefunction, one solves for the Wigner Function (WF),
the kernel function of the density matrix, which is a quasi-probability
distribution function in phase-space,

fmn(x, p) =

∫

dy ψ∗m(x− ~

2
y) e−iyp ψn(x +

~

2
y).

; Observables and transition amplitudes are phase-space integrals
of kernel functions weighted by the WF, in analogy to statistical
mechanics.

∂f

∂t
= {{H, f}} .

• WFs obey quasi-orthonormality and completeness relations;
and, characteristically, nonlocal differential eigenvalue equations
(analogous to Schrödinger’s equation), eg:

H ? fmn = H

(

x +
i~

2

→
∂ p , p−

i~

2

→
∂x

)

fmn(x, p) = En fmn(x, p).

But... WHY BOTHER??

• Can quantize superintegrable systems maximally preserving

the symmetry of the classical system—when there would be
operator ordering ambiguities in conventional QM (eg, velocity/
momentum-dependent potentials).

2C Zachos 1/8/2003 University of Chicago



eg, σ-MODELS

{I,H} = 0, ; {{Iqm, Hqm}} ≡ Iqm?Hqm−Hqm?Iqm
i~ = 0 .

(As ~→ 0, MB→ PB.)

•We find O(~2) corrections in the Hqms but not the Iqms.

L(q, q̇) =
1

2
gab(q) q̇

aq̇b, ;

pa =
∂L

∂q̇a
= gab q̇

b, q̇a = gabpb . ;

H(p, q) =
1

2
gabpapb (= L).

ṗa = −
gbc,a
2
pbpc =

gbc,a
2

q̇bq̇c.

eg, S2 (Schrödinger, Velo & Wess, Higgs...):
Eliminate z, so q1 = x, q2 = y, a, b = 1, 2.

gab = δab+
qaqb

u
, gab = δab−qaqb, det gab =

1

u
, u ≡ 1−x2−y2 .

pa = q̇a + qa
h

u
= q̇a + qa(q · p) , h ≡ −u̇/2 = xẋ + yẏ .

ṗa = pa q · p , ie, q̈ a + qa

(

ḣ

u
+
h2

u2

)

= 0.

The isometries of the manifold generate the conserved integrals of the
motion: three classical invariants

Lz = xpy − ypx , Ly =
√
u px , Lx = −

√
u py .
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PBs close into SO(3),

{Lx, Ly} = Lz , {Ly, Lz} = Lx , {Lz, Lx} = Ly .

; PBs with the Casimir invariant L · L vanish.
Since H = L · L/2, they are manifested to be time-invariant,

L̇ = {L, H} = 0.

Quantize by insertion of ?s at strategic points and orderings of the
variables to maintain maximal integrability,

Hqm = 1
2 (Lx ? Lx + Ly ? Ly + Lz ? Lz) .

The reason: in this realization, the algebra is promoted to the
corresponding MB expression without any modification, since
all of its MBs collapse to PBs: all corrections O(~) vanish.
; these particular invariants are undeformed by quantization,
L = Lqm. ; given associativity for ?,

{{L · ?L, L}} = 0.

• Quantum correction:

Hqm = H + ~2

8 (det g − 3) .
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• Spectrum ∝ ~2l(l + 1), the spectrum of the SO(3) Casimir
L · ?L = L+ ? L− + Lz ? Lz − ~Lz , for integer l.

• Produced algebraically by the identical standard recursive ladder
operations in ? space which obtain in the operator formalism Fock
space,

Lz ? L+ − L+ ? Lz = ~L+ ,

where L± ≡ Lx ± iLy .

Must also bound the ?-spectrum of Lz: From the real ?-square theorem
(TC & CZ),

〈L · ?L− Lz ? Lz〉 = 〈Lx ? Lx + Ly ? Ly〉 ≥ 0 .

The ?-genvalues of Lz, m, are thus bounded, |m| ≤ l <
√

〈L · ?L〉/~,
necessitating L− ? fm=−l = 0 . ;

L+ ? L− ? f−l = 0 = (L · ?L− Lz ? Lz + ~Lz) ? f−l ,

;

〈L · ?L〉 = ~2l(l + 1) .
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CHIRAL MODELS (eg, S3)

Geometrical advantages due to chiral structure G ⊗ G.
Vielbeine, gab = δijV

i
aV

j
b and gabV i

aV
j
b = δij.

Dreibeine are either left-invariant, or right-invariant,
(±)V i

a = εiabqb ±
√
u gai ,

(±)V ai = εiabqb ±
√
u δai.

The corresponding right and left conserved charges (left- and right-
invariant, respectively)

Ri = (+)V i
a q̇

a = (+)V aipa , Li = (−)V i
a q̇

a = (−)V aipa ,

or linear combinations into Axial and Isospin charges (again linear in
the momenta),

R− L

2
=
√
u p ≡ A ,

R + L

2
= q× p ≡ I .

The Ls and the Rs have PBs closing into standard SU(2) ⊗ SU(2), ie,
SU(2) relations within each set, and vanishing between the two sets.
;

H =
1

2
L · L =

1

2
R ·R = L .

The quantum invariants L and R again coincide with the classi-
cal ones, without deformation. Eigenvalues of the relevant Casimir
invariant now j(j + 1), for half-integer j.

• The symmetric quantum hamiltonian is simpler than for the
2-sphere (and other N-spheres): it can now be also written
geometrically,

Hqm = 1
2(paV

ai) ? (V bipb) = 1
2

(

gabpapb + ~2

4 ∂aV
bi∂bV

ai
)

.
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• Quantum correction

Hqm −H =
~2

8
(det g − 7) =

~2

8

(

1

1− q2
− 7

)

.

(In operator language, for operators x and p), it would appear more
complex: in the Weyl correspondence, the first term, gab(x)papb/2 7→

1

8

(

papbg
ab(x) + 2pag

ab(x)pb + gab(x)papb
)

=
1

2
pag

ab(x)pb +
3~2

4
,

while the second term would be the unambiguous.)

• In general,

iU−1 d

dt
U = (+)V j

a Tj q̇
a = (+)V ajpaTj , iU

d

dt
U−1 = (−)V ajpaTj ,

; The PBs of the left- and right-invariant charges
(±)V ajpa = i

2TrTjU
∓1 d

dtU
±1 close to the identical Lie algebras,

{(±)V ajpa,
(±) V bkpb} = −2f jkn (±)V anpa ,

and PB commute with each other,

{ (+)V ajpa,
(−) V bkpb} = 0.

; Hqm −H = ~2

8

(

Γbac g
cdΓabd − fijkfijk

)

.

• N-spheres not as geometrically elegant.

Hqm −H =
~2

8

(

1

u
− 1−N(N − 1)

)

.

Spectra proportional to the quadratic Casimir eigenvalues l(l+N −1)

for integer l.
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MAXIMAL SUPERINTEGRABILITY & NAMBU BRACKETS

Extra invariants beyond those required for integrability.
Optimal, elegant accounting through NBs in phase space.
In an N -dimensional space, ; 2N -dimensional phase space, mo-
tion is confined on the constant surfaces specified by the algebraically
independent integrals of the motion (eg, Lx, Ly, Lz for S2.)

; the phase-space velocity v = (q̇, ṗ) is always perpendicular to
the 2N -dim phase space gradients ∇ = (∂q, ∂p) of all these
integrals of the motion.

• If there are 2N − 1 algebraically independent integrals, the phase-
space velocity must be proportional to the cross-product of all those
gradients.

; Motion fully specified for any phase-space function k(q,p) by a
phase-space Jacobian,

dk

dt
= ∇k · v
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∝ ∂i1k ε
i1i2...i2N ∂i2Li1...∂i2NL2N−1

=
∂(k, L1, ..., ..., L2N−1)

∂(q1, p1, q2, p2, ..., qN , pN)
≡ {k, L1, ..., L2N−1} .

≡ the Nambu Bracket
• The proportionality constant is shown to be time-invariant.

Superintegrable systems in phase space cannot avoid being de-
scribed by NBs.

eg, S2: dk
dt =

∂(k,Lx,Ly,Lz)
∂(x,px,y,py)

.

eg, SN :

dk

dt
=

(−1)(N
2−1)

P2P3 · · ·PN−1

∂ (k, P1, L12, P2, L23, P3, · · · , PN−1, LN−1 N , PN)

∂ (x1, p1, x2, p2, · · · , xN , pN)
,

( Pa =
√
u pa, for a = 1, · · · , N , and La,a+1 = qapa+1 − qa+1pa, for

a = 1, · · · , N − 1. )

In general NBs possess all antisymmetries of Jacobian determinants;
and obey the Leibniz rule,

{k(L,M), f1, f2, ...} =
∂k

∂L
{L, f1, f2, ...} +

∂k

∂M
{M, f1, f2, ...}.

; Eg, the hamiltonian is constant,

dH

dt
=

{

L · L
2

, ..., ..., ...

}

= 0,
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• The impossibility to antisymmetrize more than 2N indices in 2N -
dimensional phase space,

εab....c[iεj1j2...j2N ] = 0 ,

leads to the (generalized) “Fundamental” Identity (FI),

{f0{f1, ..., fm−1, fm}, fm+1, ..., f2m−1}+ {fm, f0{f1, ..., fm−1, fm+1}, fm+2, ..., f2m−1}
+...+ {fm, ..., f2m−2, f0{f1, ..., fm−1, f2m−1}} = {f1, ..., fm−1, f0{fm, fm+1, ..., f2m−1}}.

not the generalization of the Jacobi Identity—more like a conse-
quence of a derivation property.

Closure under PBs of quantities serving as arguments in the NB does
not suffice for a NB to vanish: viz. {Lx, Ly} = Lz. But it is always true
that PBs of conserved integrals are themselves conserved integrals:

d{La, Lb}
dt

∝ {{La, Lb}, L1, ..., L2N−1}

must vanish.
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• PBs result from a maximal reduction of NBs, by inserting 2N − 2

phase-space coordinates and summing over them, thereby taking
symplectic traces,

{L,M} =
1

(N − 1)!

{

L,M, xi1, pi1, · · · , xiN−1
, piN−1

}

.

• Fewer traces lead to relations between NBs of maximal rank, 2N ,
and those of lesser rank, 2k,

{L1, · · · , L2k} =
1

(N − k)!

{

L1, · · · , L2k, xi1, pi1, · · · , xiN−k
, piN−k

}

.

Essentially, {L1, · · · , L2k} acts like a Dirac Bracket (DB), up to a nor-
malization {L1, L2}DB. The fixed additional entries L3, · · · , L2k in the
NB play the role of the constraints in the DB.

; DB satisfies the Jacobi Identity.

• By virtue of this symplectic trace, for a general system—not only
a superintegrable one—Hamilton’s equations admit a different NB
expression,

dk

dt
= {k,H} =

1

(N − 1)!
{k,H, xi1, pi1, ..., xiN−1

, piN−1
} .

• More elaborate isometries of general manifolds in such models
expected to yield to similar analysis.
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QUANTIZATION of NBs (Nambu vs Zariski)

Undeserved bad reputation, on account of top-down shortcomings.
But, in any case ....
• It must coincide with Moyal, or standard, quantization for the spe-
cific models above! Does it?

Nambu’s (1973) proposal (here applied to phase-space), QNBs:

[A,B]? ≡ i~ {{A,B}}

[A,B,C]? ≡ A?B?C−A?C?B+B?C?A−B?A?C+C?A?B−C?B?A
[A,B,C,D]? ≡ A?[B,C,D]?−B?[C,D,A]?+C?[D,A,B]?−D?[A,B,C]? =

= [A,B]? ? [C,D]? + [A,C]? ? [D,B]? + [A,D]? ? [B,C]?

+[C,D]? ? [A,B]? + [D,B]? ? [A,C]? + [B,C]? ? [A,D]? .

Full antisymmetry, but no Leibniz property or FI, in general.
Only a subjective shortcoming, dependent on the specific application
context! Quantization is consistent.

Objectively, for S2,

dk
dt = {{k,Hqm}} = −1

2~2 [k, LX , LY , LZ ]? ,

a derivation. ; Here, in phase space, Leibniz and FI hold,
nevertheless. Good ~→ 0 limit.

NB. For constant A, thus dA/dt = 0, [A,B,C,D]? = 0 holds iden-
tically, in contrast to the 3-argument QNB. Thus, no debilitating

constraint among the arguments B,C,D is imposed; the inconsis-
tency identified originally is a feature of odd-argument QNBs, and
does not restrict the even-argument QNBs of phase space.
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• By contrast, one might try to define a quantized Nambu
bracket {{, , , }}

F
by taking ?-products of the phase-space gradi-

ents that appear in the classical NB and applying Jordan’s trick of
symmetrizing all such products, at the expense of making the
algebra non-associative. (Also fails to grant all 3 wishes of mathe-
maticians: antisymmetry, Leibniz rule, and FI).
But it moreover does not give the correct quantum equations of
motion.

•More generic situation, eg for SN , N > 2: the QNBs provide the cor-
rect quantization rule, but need not satisfy the naive Leibniz prop-
erty (and FI) for consistency, as they are not necessarily plain deriva-
tions, but time derivatives are entwined inside strings of invariants.
Eg, for S3,

[k, P1, L12, P2, L23, P3]? = 3i~3(P2?{{k,Hqm}}+{{k,Hqm}}?P2)+Q(O(~5)).

;

[k, P1, L12, P2, L23, P3]? = 3i~3 d

dt
(P2 ? k + k ? P2) +Q(O(~5)).

The right hand side is not an unadorned derivation on k
; does not impose a Leibniz rule on the left hand side.
(Other consistencey constraints are more suitable and are satisfied.)

• [hep-th/0212267] Quantum NBs are consistent
and describe the quantum behavior of superintegrable systems equiv-
alently to standard hamiltonian quantization. All reputed inconsis-
tencies have been addressing unsuitable (and untenable) conditions.
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